SELF-OSCILLATORY FLOW IN ASYMPTOTIC
BOUNDARY LAYERS

O. A. Likhachev UDC 532.51

The loss of stability of a suction-controlled boundary-layer flow with respect to small but
finite perturbations is analyzed. Hard excitation of self-oscillations is a special characteris-
tic of this kind of flow. An unstable state of self-oscillation exists within a certain distance
of the neutral curve (in the range of stability of the original flow) for all Reynolds numbers
Re.

The use of external controlling factors, such as a negative pressure gradient, suction, a transverse
magnetic field (in the case of a conducting medium), and so on, enables the laminar mode of flow in a boundary
layer to be extended to fairly high Reynolds numbers, this effect being due to the greater degree of occupation
of the velocity profiles. It is nevertheless found that this extended laminar state loses stability with respect
to finite perturbations in an explosive manner for Reynolds numbers smaller than the critical value calculated
from the linear theory.

After the loss of stability the original steady-state flow is replaced by a periodic flow of the uniform
alternating self-oscillatory type. The existence of self-oscillations of this kind as solutions of the Navier—
Stokes equations branching off from the steady-state solution was proved in [1]. The self-oscillations branch
off at Reynolds numbers corresponding to points on the neutral curve of the linear theory of stability. The
nonlinear stability of flow in a plane channel was studied in [2], and the "hard" character of the loss of stabil-
ity experienced by the original flow was proved.

§1. For uniform suction at a constant velocity v,, the asymptotic profile of the boundary layer based on
the displacement thickness 6, =v/|vy| and the velocity at infinity u_ takes the form

u=1_1_—ev, (L.1)

Here (1.1) is the exact solution of the Navier—Stokes equations for the case of plane-parallel motion [3]. Al-
lowing for the transverse velocity component, the stream function of the perturbed motion satisfies the equa-
tion AAY/GE - udAY/dz — u'dyior — (1IRe)AAY — (1/Re)dAp/dy =

= (3P/0x)IAY/ 6y — (dg/dY)dAG/0x (1.2)
with boundary conditions based on the attachment of the flow to the wall and the requirement of minimum
growth as y — . Here Re = u,0, /v is based on the displacement thickness of the boundary layer 6,; A is
the Laplace operator.

Following [2], we take an arbitrary point corresponding to Re; on the neutral curve of the linearized
Eq. (1.2). We put

Re = Re, — *f, f= + 1 {1.3)

and seek the solution to (1.2) in the form of a series in terms of the small parameter ¢

h4s

' &" P, (z — ct. y), Rec = Re, i cpet. (1.4)
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Substituting (1.4) into (1.2) and equating the coefficients of €, to zero, we obtain a series of equations,
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For k = 1, Eq. (1.5) is homogeneous and its solution takes the form
Pz — ct, y) = B{o(y) exp [ ialzr — ct)] + o(y) exp[ —ialz — ci)]},

where @ (y) is the solution to the modified Orr—Sommerfeld equation,

res

Lo = ¢1% — 202¢"" + at.— ia Reg(u — e)(o” — a’¢) —u"9] + (¢ — o’¢’) = 0 (1.6)

with boundary conditions ¢ =¢' = 0 at y = 0 and the requirement of minimum growth in ¢{y) at infinity. For
sufficiently large y we may take u" = 0, u = 1. The solutions of (1.6) falling off at infinity then take the form

¢ = Ciexp (—ay) + Oy exp (—yy),

where

o= b2xu,.; a = a?1/4; b = a Rey(l — ).

v=v iy =12t ag = ot V@ B

Allowing for this kind of attenuation in the perturbations, the boundary conditions at the outer boundary (for
reasonably large y) may be written

(¢ —a’q) + ¥lo" — o&’¢) = 0;
(" — ) +ale” —v¢) =0, y=4.

Numerical calculations were carried out for a finite range of values 0 < y < A, where A = 10. Increasing the
range of integration had hardly any effect on the results.

In expansion (1.4) for the stream function, the term corresponding to k = 2 takes the form
P = P2 V(y) - Vi(y) exp [iclz — eb)] - V(y) exp [—2ialz — ct)]].
The function Vi(y) should satisfy th‘e inhomogeneous equation
LoV, = i (¢* — go”y

with boundary conditions Vy = V] = 0 at y = 0, and with the minimum growth condition at infinity. The func-
tion Vy(y) satisfies the boundary problem

VI Vo =ia(gg' —g¢), Vo=Vo=0 ar y=0
and the condition of minimum Vy(y) growth at infinity, which may be expressed in the form
]VO — Vi =0;
WVetVi=0 &t y=d.
The condition for the solubility of (1.5) when k > 1 is the equation cx = 0 for odd k.

It follows from (1.5) that ¥; will be the sum of harmonic oscillations with wave numbers ¢ and 3a.
The condition for the solubility of the equation governing the amplitude of the first harmonic takes the form

— ¢, Regd, + B, + jI; = 0, (1.7
where [ = j 8 (y)(¢” — a’g) dy;
]
= {0y [Va(e" — o) — Vi (e — 2%) — 2V, (7 — o) —
§

— Vo +2¢' (Vi— 422 V,) + o (Vi —4a2V))] dy;
I, = [ 8(1) [u(¢" — oq) — wgldy.
0
Here 6(y) is a solution of the problem conjugate to (1.6). Integration is carried out with respect to an infinite

region, but the integrals converge by virtue of the exponential attenuation of the integrands. In view of the fact
that on the neutral curve



OE 2,
s =18 [P+ ooy,
0
where E is the energy of the self-oscillations, the sign of f in (1.7) coincides with the sign of the derivative
9E/oRe on condition that 32 > 0. This coincidence may be interpreted as the existence of supercritical or
subcritical self-oscillations [see (1.3)].

Numerical calculations carried out by the method of differential advance and matching of the solutions
[4] showed that in the case under consideration 9E/8 Re< 0 onthewhole ofthe lowerbranch of the neutral curve
and part of the upper branch, i.e., the self-oscillations branched in the direction of smaller Reynolds num-
bers. Self-oscillations exist in the region corresponding to the stability ofthe original flow, but arethemselves
unstable. The foregoing results are illustrated in Fig. 1, which indicates the neutral curve for asymptotic
flow in a boundary layer with suction. The arrows show where the self-oscillatory conditions exist; their
direction corresponds io the sign of the derivative 9E/ Re. The change in the sign of 9E/8 Re, which passes
through zero at the point & = 0.1807, Re = 87612, does not have any fundamental significance, but is associ-
ated with a change in the orientation of the stability range relative to the neutral curve. The character of the
branching at the tip of the neutral curve, at which ¢, = 0.1557, Re, = 54370, is of fundamental significance.
If the self-oscillations branch into the region of stability, then for Re < Re, the original flow is unstable with
respect to finite perturbations, and self-oscillations of finite amplitude or turbulence may arise instantane-
ously for the first time. Thus, the nonlinear critical Reynolds number is smaller than that calculated by the
linear theory. The same results as to the character of the branching are obtained if, in Eq. (1.2), we omit the
term responsible for the existence of a transverse rate of suction, but there is a slight change in the critical
parameters, which are now Re, =47100, ¢, = 0.1625.

§2. The velocity profile of the boundary (wall) flow of a conducting, incompressible liquid subject to a
fairly strong transverse magnetic field takes the same form (1.1}, the only difference being that the displace-
ment thickness 6, = 1/ G, where G is the Hartmann number. In Eg. (1.2) instead of the term associated with
the constant transverse velocity, i.e., (1/Re)8Ad/dy, we shall have an additional term of the form (1/Re,)*
9%/0y?. The parameters corresponding to the tip of the neutral curve will be Re, =48,300, o, = 0.1617.
Otherwise, the branching of the steady-state solutions will be completely analogous to that described in the
foregoing. On the whole neutral curve self-oscillations will branch into the region corresponding to the sta-
bility of the original flow. At the tip of the neutral curve 8F/0 Re < 0, i.e., self-oscillations will exist for
Reynolds numbers smaller than the critical value given by the linear theory. The calculations were in every
case continued to Re values greater than those shown in Fig, 1.

There is a well-known result according to which the stability loss bears a soft character for Blasius
flow, but is of a hard character for even slight negative pressure gradients, although a negative pressure
gradient increases the stability of the flow in the boundary layer relatively to infinitely small perturbations.

Thus, by making use of appropriate control factors we may extend the laminar mode of flow to very
large values of Re. At the same time, perturbations of finite amplitude lead to a loss of stability of the origi-
nal steady-state process for Reynolds numbers considerably smaller than those indicated by the linear
theory. This implies that the nonlinear critical Re number possesses conservative properties with respect to
the external controlling factors.
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